EE105 - Fall 2014
 Microelectronic Devices and Circuits

Prof. Ming C. Wu
wu@eecs.berkeley.edu
511 Sutardja Dai Hall (SDH)

Lecture23-Amplifier Frequency Response

Common-Emitter Amplifier - ω_{H} Open-Circuit Time Constant (OCTC) Method

At high frequencies, impedances of coupling and bypass capacitors are small enough to be considered short circuits. Open-circuit time constants associated with impedances of device capacitances are considered instead.

$$
\omega_{H} \cong \frac{1}{\sum_{i=1}^{m} R_{i o} C_{i}}
$$

where $R_{i o}$ is resistance at terminals of ith capacitor C_{i} with all other capacitors open-circuited.
For a C-E amplifier, assuming $C_{L}=0$

$R_{\pi 0}=r_{\pi 0}$

Common-Emitter Amplifier High Frequency Response - Miller Effect

- First, find the simplified small -signal model of the C-E amp.
- Replace coupling and bypass capacitors with short circuits
- Insert the high frequency small -signal model for the transistor

(a)

Common-Emitter Amplifier - $\omega \mathrm{H}$ High Frequency Response - Miller Effect (cont.)

$$
\text { Input gain is found as } \begin{aligned}
A_{i} & =\frac{v_{b}}{v_{i}}=\frac{R_{i n}}{R_{I}+R_{i n}} \cdot \frac{r_{\pi}}{r_{x}+r_{\pi}} \\
& =\frac{R_{1}\left\|R_{2}\right\|\left(r_{x}+r_{\pi}\right)}{R_{I}+R_{1}\left\|R_{2}\right\|\left(r_{x}+r_{\pi}\right)} \cdot \frac{r_{\pi}}{r_{x}+r_{\pi}}
\end{aligned}
$$

Terminal gain is

$$
A_{b c}=\frac{v_{c}}{v_{b}}=-g_{m}\left(r_{o}\left\|R_{C}\right\| R_{3}\right) \cong-g_{m} R_{L}
$$

Using the Miller effect, we find the equivalent capacitance at the base as:

$$
\begin{aligned}
C_{e q B} & =C_{\mu}\left(1-A_{b c}\right)+C_{\pi}\left(1-A_{b e}\right) \\
& =C_{\mu}\left(1-\left[-g_{m} R_{L}\right]\right)+C_{\pi}(1-0) \\
& =C_{\mu}\left(1+g_{m} R_{L}\right)+C_{\pi}
\end{aligned}
$$

Common-Emitter Amplifier - $\omega \mathrm{H}$ High Frequency Response - Miller Effect (cont.)

- The total equivalent resistance

$$
R_{e q B}=r_{\pi 0}=r_{\pi} \|\left[r_{x}+\left(R_{B} \| R_{I}\right)\right]
$$ at the base is

- The total capacitance and resistance at the collector are
$C_{e q C}=C_{\mu}+C_{L}$
$R_{e q C}=r_{o}\left\|R_{C}\right\| R_{3}=R_{L}$
- Because of interaction through $\mathrm{C} \mu$, the two RC time constants interact, giving rise to a dominant pole.
$\omega_{p 1}=\frac{1}{r_{\pi 0}\left[C_{\pi}+C_{\mu}\left(1+g_{m} R_{L}\right)\right]+R_{L}\left(C_{\mu}+C_{L}\right)}$
$\omega_{p 1}=\frac{1}{r_{\pi 0} C_{T}} \quad$ where
$C_{T}=C_{\pi}+C_{\mu}\left(1+g_{m} R_{L}\right)+\frac{R_{L}}{r_{\pi 0}}\left(C_{\mu}+C_{L}\right)$
$r_{\pi 0}=r_{\pi} \|\left[r_{x}+\left(R_{B} \| R_{I}\right)\right]$

Common-Source Amplifier - ω_{H} Open-Circuit Time Constants

Analysis similar to the C-E case yields the following equations:

$$
R_{t h}=R_{G} \| R_{I}
$$

$$
R_{L}=R_{D}\left\|R_{3}\right\| r_{o}
$$

$$
v_{t h}=v_{i} \frac{R_{G}}{R_{I}+R_{G}}
$$

$$
C_{T}=C_{G S}+C_{G D}\left(1+g_{m} R_{L}\right)+\frac{R_{L}}{R_{t h}}\left(C_{G D}+C_{L}\right)
$$

$$
\omega_{P 1}=\frac{1}{R_{t h} C_{T}} \quad \omega_{P 2}=\frac{g_{m}}{C_{G S}+C_{L}}
$$

$$
\omega_{Z}=\frac{g_{m}}{C_{G D}}
$$

C-S Amplifier High Frequency Response Source Degeneration Resistance

First, find the simplified small -signal model of the C-S amp.

Recall that we can define an effective g_{m} to account for the unbypassed source resistance.

$$
g_{m}^{\prime}=\frac{g_{m}}{1+g_{m} R_{S}}
$$

C-S Amplifier High Frequency Response Source Degeneration Resistance (cont.)

Input gain is found as

$$
A_{i}=\frac{v_{g}}{v_{i}}=\frac{R_{G}}{R_{i}+R_{G}}=\frac{R_{1} \| R_{2}}{R_{i}+R_{1} \| R_{2}}
$$

Terminal gain is

$$
A_{g d}=\frac{v_{d}}{v_{g}}=-g_{m}^{\prime}\left(R_{i D}\left\|R_{D}\right\| R_{3}\right) \cong \frac{-g_{m}\left(R_{D} \| R_{3}\right)}{1+g_{m} R_{S}}
$$

Again, we use the Miller effect
to find the equivalent capacitance at the gate as:

$$
\begin{aligned}
C_{e q G} & =C_{G D}\left(1-A_{g d}\right)+C_{G S}\left(1-A_{g s}\right) \\
& =C_{G D}\left[1-\frac{\left(-g_{m} R_{L}\right)}{1+g_{m} R_{S}}\right]+C_{G S}\left(1-\frac{g_{m} R_{S}}{1+g_{m} R_{S}}\right) \\
& =C_{G D}\left[1+\frac{g_{m}\left(R_{D} \| R_{3}\right)}{1+g_{m} R_{S}}\right]+\frac{C_{G S}}{1+g_{m} R_{S}}
\end{aligned}
$$

C-S Amplifier High Frequency Response Source Degeneration Resistance (cont.)

The total equivalent resistance at the gate is

The total capacitance and resistance at the drain are

$$
C_{e q D}=C_{G D}+C_{L}
$$

Because of interaction through

$$
R_{e q D}=R_{i D}\left\|R_{D}\right\| R_{3} \cong R_{D} \| R_{3}=R_{L}
$$ C_{GD}, the two RC time constants interact, giving rise to the dominant pole:

$$
\omega_{p 1}=\frac{1}{R_{t h}\left[\frac{C_{G S}}{1+g_{m} R_{S}}+C_{G D}\left(1+\frac{g_{m} R_{L}}{1+g_{m} R_{S}}\right)+\frac{R_{L}}{R_{t h}}\left(C_{G D}+C_{L}\right)\right]}
$$

And from previous analysis:

$$
\omega_{p 2}=\frac{g_{m}^{\prime}}{\left(C_{G S}+C_{L}\right)}=\frac{g_{m}}{\left(1+g_{m} R_{S}\right)\left(C_{G S}+C_{L}\right)} \quad \omega_{z}=\frac{+g_{m}^{\prime}}{C_{G D}}=\frac{+g_{m}}{\left(1+g_{m} R_{S}\right)\left(C_{G D}\right)}
$$

$$
R_{e q G}=R_{G} \| R_{I}=R_{t h}
$$

C-E Amplifier High Frequency Response Emitter Degeneration Resistance

Analysis similar to the C-S case

 yields the following equations:

$$
\begin{aligned}
& R_{\pi 0}=R_{t t} \|\left[r_{\pi}+\left(\beta_{o}+1\right) R_{E}\right] \\
& R_{t h}=R_{t}\left\|R_{B}=R_{t}\right\| R_{1}\left\|R_{2} \quad R_{L}=R_{i C}\right\| R_{C}\left\|R_{3} \cong R_{C}\right\| R_{3}
\end{aligned}
$$

$$
\omega_{P 1}=\frac{1}{R_{\pi 0} C_{T}}
$$

$$
\omega_{P 1}=\frac{1}{R_{\pi 0}\left[\frac{C_{\pi}}{1+g_{m} R_{E}}+C_{\mu}\left(1+\frac{g_{m} R_{L}}{1+g_{m} R_{E}}\right)+\frac{R_{L}}{R_{\pi 0}}\left(C_{\mu}+C_{L}\right)\right]}
$$

$\omega_{P 2}=\frac{g_{m}}{\left(C_{\pi}+C_{L}\right)}=\frac{g_{m}}{\left(1+g_{m} R_{E}\right)\left(C_{\pi}+C_{L}\right)}$
$\omega_{z}=\frac{+g_{m}^{\prime}}{C_{\mu}}=\frac{+g_{m}}{\left(1+g_{m} R_{E}\right)\left(C_{\mu}\right)}$

Gain-Bandwidth Trade-offs Using Source/Emitter Degeneration Resistors

Adding source resistance to the C-S (or C-E) amp causes gain to decrease and dominant pole frequency to increase.

$$
A_{g d}=\frac{v_{d}}{v_{g}}=-\frac{g_{m}\left(R_{D} \| R_{3}\right)}{1+g_{m} R_{S}}
$$

$$
\omega_{p 1}=\frac{1}{R_{t h}\left[\frac{C_{G S}}{1+g_{m} R_{S}}+C_{G D}\left(1+\frac{g_{m} R_{L}}{1+g_{m} R_{S}}\right)+\frac{R_{L}}{R_{t h}}\left(C_{G D}+C_{L}\right)\right]}
$$

However, decreasing the gain also decreased the frequency of the second pole.

$$
\omega_{p 2}=\frac{g_{m}}{\left(1+g_{m} R_{S}\right)\left(C_{G S}+C_{L}\right)}
$$

Increasing the gain of the
C-E/C-S stage causes pole
-splitting, or increase of the difference in frequency
between the first and second poles.

High Frequency Poles Common-Base Amplifier

$$
\begin{aligned}
& A_{i} \cong \frac{1 / g_{m}}{\left(1 / g_{m}\right)+R_{I}}=\frac{1}{1+g_{m} R_{I}} \\
& A_{e c}=g_{m}\left(R_{i C} \| R_{L}\right) \cong g_{m} R_{L} \\
& R_{i C}=r_{o}\left[1+g_{m}\left(r_{\pi}\left\|R_{E}\right\| R_{I}\right)\right]
\end{aligned}
$$

Since C_{μ} does not couple input and output, input and output poles can be found directly.
$C_{e q E}=C_{\pi}$
$R_{e q E}=R_{i E}\left\|R_{E}\right\| R_{I}=\frac{1}{g_{m}}\left\|R_{E}\right\| R_{I}$
$\omega_{P 1} \cong\left[\left(\frac{1}{g_{m}}\left\|R_{E}\right\| R_{I}\right) C_{\pi}\right]^{-1} \cong \frac{g_{m}}{C_{\pi}}>\omega_{T}$
$R_{e q C}=R_{i C} \| R_{L} \cong R_{L}$
$\omega_{p 2}=\frac{1}{\left(R_{i C} \| R_{L}\right)\left(C_{\mu}+C_{L}\right)} \cong \frac{1}{R_{L}\left(C_{\mu}+C_{L}\right)}$
Cal

High Frequency Poles Common-Gate Amplifier

Similar to the C-B, since $C_{G D}$ does not couple the input and output, input and output poles can be found directly.
$C_{e q S}=C_{G S}$

$$
R_{e q S}=\frac{1}{g_{m}}\left\|R_{4}\right\| R_{I}
$$

$$
\omega_{p 1}=\frac{1}{\left(\frac{1}{g_{m}}\left\|R_{4}\right\| R_{I}\right) C_{G S}} \cong \frac{g_{m}}{C_{G S}}
$$

$$
\begin{aligned}
& C_{e q D}=C_{G D}+C_{L} \\
& R_{i D}=r_{o}\left[1+g_{m}\left(R_{4} \| R_{I}\right)\right] \\
& R_{e q D}=R_{i D} \| R_{L} \cong R_{L} \\
& \omega_{p 2}=\frac{1}{\left(R_{i D} \| R_{L}\right)\left(C_{G D}+C_{L}\right)} \cong \frac{1}{R_{L}\left(C_{G D}+C_{L}\right)}
\end{aligned}
$$

High Frequency Poles Common-Collector Amplifier

$C_{e q B}=C_{\mu}\left(1-A_{b c}\right)+C_{\pi}\left(1-A_{b e}\right)=C_{\mu}(1-0)+C_{\pi}\left(1-\frac{g_{m} R_{L}}{1+g_{m} R_{L}}\right) \quad A_{i}=\frac{v_{b}}{v_{i}}=\frac{R_{i n}}{R_{i}+R_{i n}}$
$C_{e q B}=C_{\mu}+\frac{C_{\pi}}{1+g_{m} R_{L}}$
$C_{e q E}=C_{\pi}+C_{L}$
$R_{e q B}=\left(R_{t h}+r_{x}\right)\left\|R_{i B}=\left[\left(R_{L} \| R_{B}\right)+r_{x}\right]\right\|\left[r_{\pi}+\left(\beta_{o}+1\right) R_{L}\right]=\left(R_{t h}+r_{x}\right) \|\left[r_{\pi}+(\beta+1) R_{L}\right]$
$R_{e q E}=R_{i E}\left\|R_{L} \cong\left(\frac{1}{g_{m}}+\frac{\left(R_{t h}+r_{x}\right)}{\beta_{o}+1}\right)\right\| R_{L}$
Cal

High Frequency Poles Common-Collector Amplifier (cont.)

The low impedance at the output makes the input and output time constants relatively well decoupled, leading to two poles.
$\omega_{p 1}=\frac{1}{\left(R_{t h}+r_{x}\right) \|\left[r_{\pi}+\left(\beta_{o}+1\right) R_{L}\right]\left(C_{\mu}+\frac{C_{\pi}}{1+g_{m} R_{L}}\right)}$
$\omega_{p 2} \cong \frac{1}{\left[\left(\frac{1}{g_{m}}+\frac{R_{t h}+r_{x}}{\beta+1}\right) \| R_{L}\right]\left(C_{\pi}+C_{L}\right)}$

The feed-forward high-frequency path through C_{π} leads to a zero in the $\mathrm{C}-\mathrm{C}$ response. Both the zero and the second pole are quite high frequency and are often neglected, although their effect can be significant with large load capacitances.

$$
\omega_{z} \cong \frac{g_{m}}{C_{\pi}}
$$

High Frequency Poles Common-Drain Amplifier

Similar the the C-C amplifier, the C-D high frequency response is dominated by the first pole due to the low impedance at the output of the C-C amplifier.

$$
\begin{aligned}
& \omega_{p 1}=\frac{1}{R_{t h}\left(C_{G D}+\frac{C_{G S}}{1+g_{m} R_{L}}\right)} \quad \omega_{z} \cong \frac{g_{m}}{C_{G S}} \\
& \omega_{p 2}=\frac{1}{\left(R_{i S} \| R_{L}\right)\left(C_{G S}+C_{L}\right)} \cong \frac{1}{\left(\frac{1}{g_{m}} \| R_{L}\right)\left(C_{G S}+C_{L}\right)}
\end{aligned}
$$

Frequency Response Cascode Amplifier

There are two important poles: the input pole for the C-E and the output pole for the C-B stage. The intermediate node pole can usually be neglected because of the low impedance at the input of the C-B stage. $R_{L 1}$ is small, so the second term in the first pole can be neglected. Also note the $R_{L 1}$ is equal to $1 / g_{m 2}$.

$$
\left\{\begin{array}{l}
\omega_{p B 1}=\frac{1}{r_{\pi 0} C_{T}}=\frac{1}{r_{\pi 01}\left(\left[C_{\mu 1}\left(1+\frac{g_{m 1} R_{L 1}}{1+g_{m 1} R_{E 1}}\right)+C_{\pi 1}\right]+\frac{R_{L 1}}{r_{\pi 0}}\left[C_{\mu 1}+C_{L 1}\right]\right)} \\
\omega_{p B 1}=\frac{1}{r_{\pi 01}\left(\left[C_{\mu 1}\left(1+\frac{g_{m 1}}{g_{m 2}}\right)+C_{\pi 1}\right]+\frac{1 / g_{m 2}}{r_{\pi 01}}\left[C_{\mu 1}+C_{\pi 2}\right]\right)} \cong \frac{1}{r_{\pi 01}\left(2 C_{\mu 1}+C_{\pi 1}\right)} \\
\omega_{p C 2} \cong \frac{1}{R_{L}\left(C_{\mu 2}+C_{L}\right)}
\end{array}\right.
$$

Frequency Response of Multistage Amplifier

- Problem: Use open-circuit and short-circuit time constant methods to estimate upper and lower cutoff frequencies and bandwidth.
- Approach: Coupling and bypass capacitors determine the low -frequency response; device capacitances affect the high -frequency response
 multi-stage amplifier is as shown.

Frequency Response Multistage Amplifier Parameters (example)

Parameters and operation point information for the example multistage amplifier.

TABLE 17.3							
Transistor Parameters							
	g_{m}	r_{π}	r_{0}	β_{0}	$C_{G S} / C_{\pi}$	$C_{G D} / C_{\mu}$	r_{x}
M_{1}	10 mS	∞	$12.2 \mathrm{k} \Omega$	∞	5 pF	1 pF	0Ω
Q_{2}	67.8 mS	$2.39 \mathrm{k} \Omega$	$54.2 \mathrm{k} \Omega$	150	39 pF	1 pF	250Ω
Q_{3}	79.6 mS	$1.00 \mathrm{k} \Omega$	$34.4 \mathrm{k} \Omega$	80	50 pF	1 pF	250Ω

Frequency Response Multistage Amplifier: High-Frequency Poles

High-frequency pole at the gate of M_{1} : Using our equation for the C-S input pole:

$$
\begin{aligned}
& f_{P 1}=\frac{1}{2 \pi} \frac{1}{R_{t h 1}\left[C_{G D 1}\left(1+g_{m} R_{L 1}\right)+C_{G S 1}+\frac{R_{L 1}}{R_{t h 1}}\left(C_{G D 1}+C_{L 1}\right)\right]} \\
& R_{L 1}=R_{I 12}\left\|\left(r_{x 2}+r_{\pi 2}\right)\right\| r_{o 1}=598 \Omega\|(250 \Omega+2.39 \mathrm{k} \Omega)\| 12.2 \mathrm{k} \Omega=469 \Omega \\
& C_{L 1}=C_{\pi 2}+C_{\mu 2}\left(1+g_{m 2} R_{L 2}\right) \\
& R_{L 2}=R_{I 23}\left\|R_{i n 3}\right\| r_{o 2}=R_{I 23}\left\|\left(r_{x 3}+r_{\pi 3}+\left(\beta_{o 3}+1\right)\left(R_{E 3} \| R_{L}\right)\right)\right\| r_{o 2}=3.33 \mathrm{k} \Omega \\
& C_{L 1}=C_{\pi 2}+C_{\mu 2}\left(1+g_{m 2} R_{L 2}\right)=39 \mathrm{pF}+1 \mathrm{pF}[1+67.8 m S(3.33 \mathrm{k} \Omega)]=266 \mathrm{pF} \\
& f_{P 1}=\frac{1}{2 \pi} \frac{1}{9.9 \mathrm{k} \Omega\left[1 p F[1+0.01 S(3.33 \mathrm{k} \Omega)]+5 \mathrm{pF}+\frac{469 \Omega}{9.9 \mathrm{k} \Omega}(1 \mathrm{pF}+266 \mathrm{pF})\right]}
\end{aligned}
$$

Frequency Response
 Multistage Amplifier: High-Freq. Poles (cont.)

High-frequency pole at the base of Q_{2} : From the detailed analysis of the C-S amp, we find the following expression for the pole at the output of the $M_{1} \mathbf{C}-S$ stage:

$$
f_{p 2}=\frac{1}{2 \pi} \frac{C_{G S 1} g_{L 1}+C_{G D 1}\left(g_{m 1}+g_{t h 1}+g_{L 1}\right)+C_{L 1} g_{t h 1}}{\left[C_{G S 1}\left(C_{G D 1}+C_{L 1}\right)+C_{G D 1} C_{L 1}\right]}
$$

For this particular case, $\mathrm{C}_{\mathrm{L} 1}\left(\mathrm{Q}_{2}\right.$ input capacitance) is much larger than the other capacitances, so $f_{p 2}$ simplifies to:

$$
\begin{gathered}
f_{p 2} \cong \frac{1}{2 \pi} \frac{C_{L 1} g_{t 11}}{\left[C_{G S 1} C_{L 1}+C_{G D 1} C_{L 1}\right]} \cong \frac{1}{2 \pi} \frac{1}{R_{t h 1}\left(C_{G S 1}+C_{G D 1}\right)} \\
f_{p 2}=\frac{1}{2 \pi(9.9 k \Omega)(5 p F+1 p F)}=2.68 \mathrm{MHz}
\end{gathered}
$$

Frequency Response

Multistage Amplifier: High-Freq. Poles (cont.)

High-frequency pole at the base of \mathbb{Q}_{3} : Again, due to the pole-splitting behavior of the C-E second stage, we expect that the pole at the base of Q_{3} will be set by equation 17.96:

$$
f_{p 3} \cong \frac{g_{m 2}}{2 \pi\left[C_{\pi 2}\left(1+\frac{C_{L 2}}{C_{\mu 2}}\right)+C_{L 2}\right]}
$$

The load capacitance of Q_{2} is the input capacitance of the C-C stage.

$$
\begin{gathered}
C_{L 2}=C_{\mu 3}+\frac{C_{\pi 3}}{1+g_{m 3}\left(R_{E 3} \| R_{L}\right)}=1 p F+\frac{50 p F}{1+79.6 m S(3.3 \mathrm{k} \Omega \| 250 \Omega)}=3.55 \mathrm{pF} \\
f_{p 3} \cong \frac{67.8 m S[1 \mathrm{k} \Omega /(1 \mathrm{k} \Omega+250 \Omega)]}{2 \pi\left[39 p F\left(1+\frac{3.55 p F}{1 p F}\right)+3.55 p F\right]}=47.7 \mathrm{MHz}
\end{gathered}
$$

Frequency Response Multistage Amplifier: f_{H} Estimate

There is an additional pole at the output of Q3, but it is expected to be at a very high frequency due to the low output impedance of the C-C stage. We can estimate f_{H} from eq. 16.23 using the calculated pole frequencies.

$$
f_{H}=\frac{1}{\sqrt{\frac{1}{f_{p 1}^{2}}+\frac{1}{f_{p 2}^{2}}+\frac{1}{f_{p 3}^{2}}}}=667 \mathrm{kHz}
$$

The SPICE simulation of the circuit on the next slide shows an f_{H} of 667 kHz and an f_{L} of 530 Hz . The phase and gain characteristics of our calculated high frequency response are quite close to that of the SPICE simulation. It was quite important to take into account the pole-splitting behavior of the C-S and C-E stages. Not doing so would have resulted in a calculated f_{H} of less than 550 kHz.

Cal

Frequency Response Multistage Amplifier: SPICE Simulation

Frequency (Hz)

